
Learning to Rank Instant Search Results with Multiple Indices: A
Case Study in Search Aggregation for Entertainment

Scott Rome
Scott_Rome@comcast.com

Applied AI Research, Comcast
Philadelphia, PA, USA

Sardar Hamidian
Sardar_Hamidian@comcast.com
Applied AI Research, Comcast

Washington, DC, USA

Richard Walsh
Richard_Walsh@comcast.com
Applied AI Research, Comcast

Sunnyvale, CA, USA

Kevin Foley
Kevin_Foley@comcast.com

Applied AI Research, Comcast
Washington, DC, USA

Ferhan Ture
Ferhan_Ture@comcast.com

Applied AI Research, Comcast
Washington, DC, USA

ABSTRACT
AtXfinity, an instant search system provides a variety of results for a
given query from different sources. For each keystroke, new results
are rendered on screen to the user, which could contain movies,
television series, sporting events, music videos, news clips, person
pages, and other result types. Users are also able to use the Xfinity
Voice Remote to submit longer queries, some of which are more
open-ended. Examples of queries include incomplete words which
match multiple results through lexical matching (i.e., "ali"), topical
searches ("vampire movies"), and more specific longer searches
("Movies with Adam Sandler"). Since results can be based on lexical
matches, semantic matches, item-to-item similarity matches, or a
variety of business logic driven sources, a key challenge is how to
combine results into a single list. To accomplish this, we propose
merging the lists via a Learning to Rank (LTR) neural model which
takes into account the search query. This combined list can be
personalized via a second LTR neural model with knowledge of
the user’s search history and metadata of the programs. Because
instant search is under-represented in the literature, we present
our learnings from research to aid other practitioners.

CCS CONCEPTS
• Information systems→Retrieval models and ranking; Users
and interactive retrieval; Multimedia and multimodal retrieval.

KEYWORDS
learning to rank, neural networks, NLP retrieval, off-policy evalua-
tion, information retrieval
ACM Reference Format:
Scott Rome, Sardar Hamidian, Richard Walsh, Kevin Foley, and Ferhan Ture.
2022. Learning to Rank Instant Search Results with Multiple Indices: A Case
Study in Search Aggregation for Entertainment. In Proceedings of the 45th
Int’l ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’22), July 11–15, 2022, Madrid, Spain. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3477495.3536334

SIGIR ’22, July 11–15, 2022, Madrid, Spain.
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8732-3/22/07.
https://doi.org/10.1145/3477495.3536334

1 INTRODUCTION
Instant search is an under-studied use case in information retrieval
(IR), which has been noted by industry practitioners [9, 13]. Instant
search is characterized as a search where a new set of results is
returned for every keystroke and is applicable across a variety
of different industries and use cases [21]. To meet strict latency
requirements, inverted indices are typically used in this setting.
Inverted indices are a map from string queries to sets of results.
Most IR systems employ at least two steps: a candidate selection
step from which a small subset is selected from a large pool of
options followed by an ordering step which reranks the retrieved
items. This approach has been implemented by several companies
for both search and recommendation problems [3, 7].

When aiming to provide a wide range of results in a single
list beyond lexical matches, numerous challenges are apparent
when implementing a robust instant search service. First, how
should one combine results for a given search query when there
are multiple matches present (lexical, semantic, etc.)? When using
several candidate sources, how does one prevent ancillary matches
from being ranked higher than more logical matches? Should one
consider item type (in our case, movies, television shows, sporting
events, etc.) in ranking?

To that end, our goal is to present proposed solutions to these
challenges by describing an approach to instant search that can
serve millions of users on a platform. We will discuss many prac-
tical points around making a production instant search system
work at a large scale. These points will focus on the design of the
various necessary indices, model architectures, business logic, and
metrics and sessionization criteria which in combination create a
cohesive experience. We finally will present online experiments of
the proposed system and discuss its performance against a global
popularity sorting algorithm.

2 APPROACH
The following section discusses different components of the pro-
posed search framework shown in Figure 1. Candidate genera-
tion, availability filtering, and reranking constitute the key compo-
nents of the process. In the candidate generation step, asynchro-
nous calls are made to multiple indices. For example, a query for
"𝑇𝐻𝐸 𝑂𝐹𝐹𝐼𝐶𝐸" may return the lexical match The Office and an

https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/3477495.3536334
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3477495.3536334
https://creativecommons.org/licenses/by-nc-nd/4.0/

SIGIR ’22, July 11–15, 2022, Madrid, Spain. Rome, et al.

1 0

Generate Candidates Filter Rerank

Search
for

“Park” Jurassic Park

Parks and Rec

The Office

Parks and Rec

Jurassic Park

The Office

Lexical Match

Synonyms

Semantic
Search

Parks and Rec

Jurassic Park

The Office

Item-to-Item
…

Park Movie

Figure 1: An example diagram of the search flow for the
query "Park".

item-to-item similarity match like Parks and Recreation. The candi-
date results may include movies, television shows, sporting events,
and music videos among other types, which can be lexical matches,
semantic matches, or item-to-item similarity. Then, the candidates
need to be filtered based on if the item is available to the user.
(Availability will be discussed in Section 2.3.2.) The results are next
combined into a single list through a heuristic before being sent to
the reranking step, which consists of two deep learning models that
combine the different candidate lists and fine-tune the results to
the user. In the final stage of the pipeline, business logic would be
applied to generate the final rankings while also respecting product
requirements.

2.1 Candidate Generation
Generating candidates can be accomplished via lexical matching,
semantic matching, item-to-item similarity matching, and trend-
ing items. In the following sections, all specifications relating to
these possible indices are described. We also note that there can
also be a fallback index that is used when other indices have no
matches, but that index is outside the scope of this work. As a
general framework, these approaches are applicable across a wide
range of disciplines with reasonable results while being easy to im-
plement in a performant, production-ready way to handle millions
of users.

2.1.1 Lexical Matching. Lexical matching is based on a relevance
score derived from the combination of text-based prefix matching
and, if desired, popularity. Items whose title contain the query as a
prefix are included in a candidate list and the results are reranked
by a global popularity score. This component can be implemented
using (for instance) Apache SOLR, a Lucene-based [8] technology.

2.1.2 Semantic Search Model. For semantic matching, an unsuper-
vised zero-shot retrieval system using a twin neural network (some-
times called a siamese neural network) [2] and pre-trained natural
language processing (NLP) model with an additional match boost-
ing component can be implemented. A similar use of pre-trained
NLP models and Siamese Networks for this type of application has
been demonstrated by other practitioners [20].

In particular, a pre-trained sentence embedding model (Univer-
sal Sentence Encoder [4]) would be applied to encode a vector
representation of brief text synopses of indexed content. Better
performance may be achieved by augmenting these brief synopses
with additional words from the item’s metadata, such as the genre
of the program (i.e. "Mystery," "Romantic Comedy," etc.) and the
names of cast members with lead roles. An example of the resulting

text blob for a fabricated horror-comedy movie is shown in Figure
2.

"A Yellow Search Paper starring Scott Rome, Sardar
Hamidian, Richard Walsh, Kevin Foley and Ferhan
Ture. A machine learning research team stumbles
upon a research paper written by a mysterious prac-
titioner. Little did they know that reading the paper
induces madness. Movie. Horror Comedy. Rated R.
2022"

Figure 2: A toy example of metadata representing the input
data to one of the towers of a twin neural network for seman-
tic retrieval.

At runtime, a query would be encoded to a vector representation
via the same sentence embedding model, and an approximate K-
nearest neighbor search can retrieve items with metadata that are
semantically most similar to the query text.

To improve the quality of the matching, one can add a second
component to boost items whose metadata approximately contain
n-grams from the query, which can improve performance on more
diverse queries. For example, queries for "Native American movies"
were returning "Wild West movies" as well. By adding this sec-
ond component, which can be referred to as "approximate n-gram
boosting", the metadata must include the term "Native American"
somewhere in the description for the item to be a viable match.
In approximate n-gram boosting, word-level n-grams of the item
metadata are computed and hashed into 𝑁 buckets, resulting in
a multi-hot vector representation. The semantic vector represen-
tation of the items discussed previously and the n-gram boosting
vectors are concatenated together and stored to be searched against.
As far as the authors know, this "approximate n-gram boosting" is
novel in the case of multimedia semantic search.

2.1.3 Item-to-Item Similarity Candidates. For item-to-item similar-
ity candidates in search, one can use a collaborative filtering-based
approach such as described in Jojic et al. Lists of similar results to a
query may be pre-computed and stored in a key-value mapping to
improve runtime performance. For example, the key ”𝑇𝐻𝐸𝑂𝐹𝐹𝐼𝐶𝐸”
will have a list of similar item identifiers stored as its value. Such
key-value pairs are identified via an offline processing job with a
heuristic that identifies search queries with few lexical matches.
This process creates similar candidate lists for incomplete queries
like ”𝑇𝐻𝐸 𝑂𝐹𝐹 ” as well.

2.1.4 Trending Candidates. Trending candidates can be identified
via an offline processing job which tags items as trending and stores
them in an in-memory cache. At runtime, trending items are identi-
fied and can be boosted to the top of the list based on business logic.
To identify trending items, a simple anomaly detection algorithm
can be used. Data for each item over the last 𝑁 days are used to
compute a distribution of the log of the daily search result click
totals. A 𝑡-test can then be employed to determine if the current
day’s click volume for that item is anomalous. For new items, we
utilize a threshold for the total clicks for the first𝑀 days to indicate
if the item should be boosted.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Learning to Rank Instant Search Results with Multiple Indices: A Case Study in Search Aggregation for Entertainment SIGIR ’22, July 11–15, 2022, Madrid, Spain.

2.2 Reranking
A two-step approach with two deep learning models to perform
reranking can be implemented. The end result of the system is a
single list of content items which combines and ranks the search
results from various inverted indices. This approach can solve the
problems created by having multiple sources of candidates using a
machine learning model to blend the various candidate lists into a
ranked list, which is then ready to be personalized.

2 1

BLENDER MODEL ARCHITECTURE

Dot Product

Rankings
Vector

Search Phrase

Embedding Layer

Dense Layer

Dense Layer

...

Candidate Item
IDs

u1
u2
u3

um

Embedding Layer

...

Dense Layer

Dense Layer

Figure 3: A diagram of the model used as the first step in the
proposed reranking pipeline.

2.2.1 Combining Candidate Lists. For reranking, a two-towermodel
such as shown in Figure 3 can be utilized. The first tower breaks
down the query into word-level n-grams, which are embedded and
averaged. Similarly, the second tower embeds the item identifier
being ranked. This model is trained via a standard pairwise Learn-
ing to Rank approach to capture item popularity for a given query.
This approach allows the model to combine the various candidates
into a cohesive list. For the experiments found in Section 3, training
data consisted of aggregated click data, a "group by" sum of clicks
aggregated at the (query, item ID) level, and the final pairwise train-
ing set numbered approximately 10 million pairs. The model was
retrained nightly using two weeks of recent data. This model was
also stored with a set where the elements were the concatenation
of the query and the item identifier. If a query/item pairing was
not present in the set at runtime, the model would not rerank the
results and instead a business logic ordering was preserved.

2.2.2 Personalization. The second model in the pipeline personal-
izes the top 𝑁 results. The second model’s architecture (Figure 4)
is inspired by published works where recurrent neural networks
(RNNs) are trained end-to-end in a Learning to Rank paradigm
[9, 15, 22]. RNNs used in this fashion allow one to identify the
similarity between the search query and the item title. The input
for the character-level LSTM layer is of the form "<s> 𝑞𝑢𝑒𝑟𝑦 <sep>
𝑡𝑖𝑡𝑙𝑒 <e>" concatenated with a segment embedding described by
Hashemi et al. to differentiate between query characters and title
characters. The LSTM output is combined with embeddings of the
item IDs and metadata to form a search context vector. A dot prod-
uct of the search context vector and the user search click history is
computed for the final ranking.

For the experiment in Section 3, the model was trained end-to-
end from data using a point-wise learning to rank approach. We
only included query sessions (defined in Section 2.3.1) for training
that had at least one search result click event. A typical training
consisted of 150 million examples taken over a recent month of
production data. The training regimen used a multi-GPU scheme
and was programmed using Keras and TensorFlow [1, 6].

2.2.3 Additional Business Logic. After the reranking has been com-
pleted, it is often still desirable to apply a final step of business logic
to meet product requirements. An example product requirement
could be as follows: item-to-item similarity matches which do not
also contain a lexical match must appear after lexical matches in
the final list. To accomplish this and other similar requirements,
one can classify items into primary, secondary, and tertiary groups
based on the candidate generation source and metadata. For in-
stance, item-to-item similarity matches could be secondary results,
whereas lexical matches could be defined as primary results. One
could then enforce that primary results are always presented be-
fore secondary results, and likewise for tertiary results. The results
would remain in the order assigned by the models inside each tier.
This business logic would ensure that results are presented in a
reasonable and expected order.

24

Dot Product

Rankings
Vector

u1
u2
u3

um
...

Search Click
History

Embedding Layer

Average Dense Layer

...

v1
v2
v3

vk
...

Candidate Item
IDs

Embedding Layer

Additional
Metadata

Embedding Layer(s)

Segment

Embedding Layer

Character Tokenizer

LSTM

Search
Phrase,

Item Title

Figure 4: A diagram of the architecture of the proposed per-
sonalization model for instant search.

2.3 Metrics and Offline Evaluation
In similar settings, it has been shown that users judge the quality
of a search experience by whether the search was successful and
the effort it took to complete the search [10, 13]. With that in mind,
one option is to implement hero metrics of Successful Search Rate
(SSR), defined as the percentage of sessions ending in a search
result click with no follow-up search within 𝑇 minutes, and the
Average Number of Keystrokes (ANK) until the correct search result
is clicked. A myriad of auxiliary metrics that quantify the customer
experience including Time to Success, Dead End Search Rate, and
Percent of Enriched Queries (i.e., queries with non-lexical matches)
can also be tracked. Metrics should be calculated at the session level
and could be used for A/B testing and monitoring of the system.

2.3.1 Sessionization Logic. A key element of the approach is the
definition of a search session. A search session in the instant search
setting can be comprised of numerous prefix queries as a user types

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

SIGIR ’22, July 11–15, 2022, Madrid, Spain. Rome, et al.

in the desired query. For example, when a user is searching for
"The Office", their queries would form a list 𝐿 = ["𝑇 ", "𝑇𝐻 ", "𝑇𝐻𝐸",
"𝑇𝐻𝐸 ", "𝑇𝐻𝐸 𝑂", ...] which need to be grouped together to form
a "query session". Query sessions are formed via an edit distance
heuristic using Levenshtein Distance which takes into account
situations where letters may not be sent to the backend due to
the speed of data entry. For instance, the previous query session
𝐿 may be sent to an API as such: 𝐿′ = ["𝑇 ", "𝑇𝐻𝐸", "𝑇𝐻𝐸 ", ...].
Query sessions can then be grouped again by time to form a "search
session", where the overall experience metrics can be calculated to
validate the performance of the system and characterize customer
success and effort.

2.3.2 Offline Evaluation. In the off-policy evaluation literature, ran-
domization and propensity weighting are commonly used to create
accurate offline estimates of online results [5, 14, 16–19]. Many
typical randomization schemes used like uniform shuffling as in Li
et al. could lead to a poor customer experience. However, in many
use cases, there is a concept of item availability for a user which
has been discussed by other industry practitioners [13]. A user may
not be eligible to view a given item due to their subscriptions, and
in which case, the item would be removed from the results. This
leads to different users having different result sets. This pseudo-
randomization may not be sufficient for accurate estimates, but we
have found in practice that offline estimates of Normalized Discount
Cumulative Gain (NDCG) and Mean Reciprocal Rank (MRR) are
directionally accurate when using such pseudo-randomized data as
described above.

3 RESULTS
The results discussed below are from online A/B tests with metrics
calculated using session data. The A/B tests were typically run for
2 weeks with treatment and control receiving an equal amount
of traffic. The significance level required was 𝛼 = .01. Sample
Ratio Mismatch (SRM) tests were performed to ensure the splits
observed were valid. Because metrics were calculated at a session
level while treatment was assigned at the account level, a delta
method correction to the variance was applied. For details and best
practices, we recommend Kohavi et al.

Figure 5 documents the improvements observed from introduc-
ing a similar reranking pipeline as described above. In fact, there
was a strong improvement on our key metrics when only intro-
ducing the first step of the reranking pipeline and a second strong
improvement when the personalization model was added. The per-
sonalized model made a larger impact on shorter queries (e.g. "𝑀𝐴"),
particularly in "effort" metrics like Average Number of Keystrokes
and Time to Success and relevancy metrics like NDCG and MRR.
These cases will have many possible outcomes for the search phrase
and the personalization model was able to improve the rankings
significantly. In the cases where the user is typing a query, a search
if unsuccessful is typically due to the user abandoning the session
(e.g., the search took too much effort to find what the user wanted)
or the item the user was searching for was not available to them.
Thus, we did not expect nor did we see a large increase in Search
Success Rate by deploying any machine learning based ranking;
however, there was a small improvement. In the case of dictated
queries matching the title of an item, like "𝑇𝐻𝐸 𝑂𝐹𝐹𝐼𝐶𝐸", the pool

of search results is much smaller, and there are fewer options to
reorder the results. So, in these cases we only saw amodest improve-
ment in relevancy metrics like NDCG. However, for longer queries
that are not exact title matches, we saw adequate improvements
in effort and success metrics for both dictated and typed queries.
Such queries frequently appear in search fallback scenarios, where
a system returns "best effort" results (e.g., using edit distance based
algorithms and n-gram matching) when no first order candidates
are found.

Percent Improvement
Search Success Rate Time to Click Number of Keystrokes

.5-5% 10-20% 10-20%

Figure 5: Metric improvements of a reranking step as pro-
posed in Section 2.2 over a global popularity sort, calculated
through online experiments on typed queries. Values are
given in ranges for business privacy purposes.

On the other hand, we observed the largest gains in Search
Success Rate from the introduction of new indices. By handling
more search use cases, the system produces fewer dead ends for
search sessions, resulting in users being able to find content for
more open ended queries and when the original item they searched
for was unavailable.

4 DISCUSSION
Due to the dearth of papers on instant search, we have presented
a potential implementation of an instant search system. The chal-
lenges faced with returning a single list containing multiple dif-
ferent types of results (i.e., movies, television series, music videos,
sporting events, etc.) andmatch types (lexical, semantic, etc.) extend
beyond the media domain and will be relevant for many practi-
tioners working in product search use cases. We hope that the
lessons outlined above can help others identify a path forward to
implement their own large-scale instant search systems.

COMPANY PORTRAIT
Comcast Corporation (Nasdaq: CMCSA) is a global media and tech-
nology company that connects people to moments that matter. We
are principally focused on connectivity, aggregation, and streaming
with 57 million customer relationships across the United States and
Europe. Visit www.comcastcorporation.com for more information.

PRESENTER BIO
As a senior principal researcher at Comcast Cable, Scott currently
works on the Search team building deep learning models to rank re-
sults for customers on Xfinity’s X1, XClass, and Flex. In the past, he
had trained contextual bandit models for recommendations for the
Xfinity Assistant while utilizing off-policy evaluation techniques.
His previous roles include data science stints in advertising, health-
care, and finance. He holds a doctoral degree in mathematics from
Drexel University and enjoys cooking, reading, and spending time
with his family.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Learning to Rank Instant Search Results with Multiple Indices: A Case Study in Search Aggregation for Entertainment SIGIR ’22, July 11–15, 2022, Madrid, Spain.

DISCLAIMER
The foregoing is a discussion of research and development and not
a representation of implementations.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

[2] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah.
1993. Signature Verification Using a "Siamese" Time Delay Neural Network. In
Proceedings of the 6th International Conference on Neural Information Processing
Systems (Denver, Colorado) (NIPS’93). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 737–744.

[3] Yuri M. Brovman, Marie Jacob, Natraj Srinivasan, Stephen Neola, Daniel Galron,
Ryan Snyder, and Paul Wang. 2016. Optimizing Similar Item Recommendations
in a Semi-Structured Marketplace to Maximize Conversion. In Proceedings of the
10th ACM Conference on Recommender Systems (Boston, Massachusetts, USA)
(RecSys ’16). Association for Computing Machinery, New York, NY, USA, 199–202.
https://doi.org/10.1145/2959100.2959166

[4] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni
St. John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Brian
Strope, and Ray Kurzweil. 2018. Universal Sentence Encoder for English. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations. Association for Computational Linguistics,
Brussels, Belgium, 169–174. https://doi.org/10.18653/v1/D18-2029

[5] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and
Ed H Chi. 2019. Top-k off-policy correction for a REINFORCE recommender
system. In Proceedings of the Twelfth ACM International Conference on Web Search
and Data Mining. ACM, 456–464.

[6] François Chollet et al. 2015. Keras. https://keras.io.
[7] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks

for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems (Boston, Massachusetts, USA) (RecSys ’16). Association for
Computing Machinery, New York, NY, USA, 191–198. https://doi.org/10.1145/
2959100.2959190

[8] Apache Software Foundation. 2011. Apache Lucene - Scoring. http://lucene.
apache.org/java/3_4_0/scoring.html letzter Zugriff: 20. Oktober 2011.

[9] Helia Hashemi, Aasish Pappu, Mi Tian, Praveen Chandar, Mounia Lalmas, and
Benjamin Carterette. 2021. Neural Instant Search for Music and Podcast. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery Data
Mining (Virtual Event, Singapore) (KDD ’21). Association for Computing Machin-
ery, New York, NY, USA, 2984–2992. https://doi.org/10.1145/3447548.3467188

[10] Christine Hosey, Lara Vujović, Brian St. Thomas, Jean Garcia-Gathright, and
Jennifer Thom. 2019. Just Give Me What I Want: How People Use and Evaluate

Music Search. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing
Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300529

[11] Oliver Jojic, Manu Shukla, and Niranjan Bhosarekar. 2011. A Probabilistic Defini-
tion of Item Similarity. In Proceedings of the Fifth ACMConference on Recommender
Systems (Chicago, Illinois, USA) (RecSys ’11). Association for Computing Machin-
ery, New York, NY, USA, 229–236. https://doi.org/10.1145/2043932.2043973

[12] R. Kohavi, D. Tang, and Y. Xu. 2020. Trustworthy Online Controlled Experi-
ments: A Practical Guide to A/B Testing. Cambridge University Press. https:
//experimentguide.com/

[13] Sudarshan Lamkhede and Sudeep Das. 2019. Challenges in Search on Streaming
Services: Netflix Case Study. In Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval (Paris, France)
(SIGIR’19). Association for ComputingMachinery, New York, NY, USA, 1371–1374.
https://doi.org/10.1145/3331184.3331440

[14] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. 2011. Unbiased Offline
Evaluation of Contextual-bandit-based News Article Recommendation Algo-
rithms. In Proceedings of the Fourth ACM International Conference on Web Search
and Data Mining (Hong Kong, China) (WSDM ’11). ACM, New York, NY, USA,
297–306. https://doi.org/10.1145/1935826.1935878

[15] Dae Hoon Park and Rikio Chiba. 2017. A Neural Language Model for Query
Auto-Completion. In Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval (Shinjuku, Tokyo, Japan)
(SIGIR ’17). Association for ComputingMachinery, NewYork, NY, USA, 1189–1192.
https://doi.org/10.1145/3077136.3080758

[16] Alex Strehl, John Langford, Lihong Li, and Sham M Kakade. 2010. Learning from
Logged Implicit Exploration Data. In Advances in Neural Information Processing
Systems 23, J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and
A. Culotta (Eds.). Curran Associates, Inc., 2217–2225. http://papers.nips.cc/
paper/3977-learning-from-logged-implicit-exploration-data.pdf

[17] Adith Swaminathan and Thorsten Joachims. 2015. Batch Learning from Logged
Bandit Feedback through Counterfactual Risk Minimization. Journal of Ma-
chine Learning Research 16, 52 (2015), 1731–1755. http://jmlr.org/papers/v16/
swaminathan15a.html

[18] Adith Swaminathan and Thorsten Joachims. 2015. The Self-Normalized Estimator
for Counterfactual Learning. InAdvances in Neural Information Processing Systems
28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (Eds.).
Curran Associates, Inc., 3231–3239. http://papers.nips.cc/paper/5748-the-self-
normalized-estimator-for-counterfactual-learning.pdf

[19] Adith Swaminathan, Akshay Krishnamurthy, Alekh Agarwal, Miroslav Dudík,
John Langford, Damien Jose, and Imed Zitouni. 2016. Off-policy evaluation for
slate recommendation. CoRR abs/1605.04812 (2016). arXiv:1605.04812 http:
//arxiv.org/abs/1605.04812

[20] Alexandre Tamborrino. 2022. Introducing Natural Language Search for Pod-
cast Episodes. https://engineering.atspotify.com/2022/03/introducing-natural-
language-search-for-podcast-episodes/

[21] Ganesh Venkataraman, Abhimanyu Lad, Viet Ha-Thuc, and Dhruv Arya. 2016.
Instant Search: A Hands-on Tutorial. In Proceedings of the 39th International ACM
SIGIR Conference on Research and Development in Information Retrieval (Pisa,
Italy) (SIGIR ’16). Association for Computing Machinery, New York, NY, USA,
1211–1214. https://doi.org/10.1145/2911451.2914806

[22] Tian Wang, Yuri M. Brovman, and Sriganesh Madhvanath. 2021. Personalized
Embedding-based e-Commerce Recommendations at eBay. CoRR abs/2102.06156
(2021). arXiv:2102.06156 https://arxiv.org/abs/2102.06156

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.tensorflow.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/2959100.2959166
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.18653/v1/D18-2029
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://keras.io
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/2959100.2959190
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://lucene.apache.org/java/3_4_0/scoring.html
http://lucene.apache.org/java/3_4_0/scoring.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3447548.3467188
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3290605.3300529
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/2043932.2043973
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://experimentguide.com/
https://experimentguide.com/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3331184.3331440
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/1935826.1935878
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3077136.3080758
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://papers.nips.cc/paper/3977-learning-from-logged-implicit-exploration-data.pdf
http://papers.nips.cc/paper/3977-learning-from-logged-implicit-exploration-data.pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://jmlr.org/papers/v16/swaminathan15a.html
http://jmlr.org/papers/v16/swaminathan15a.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://papers.nips.cc/paper/5748-the-self-normalized-estimator-for-counterfactual-learning.pdf
http://papers.nips.cc/paper/5748-the-self-normalized-estimator-for-counterfactual-learning.pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://arxiv.org/abs/1605.04812
http://arxiv.org/abs/1605.04812
http://arxiv.org/abs/1605.04812
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://engineering.atspotify.com/2022/03/introducing-natural-language-search-for-podcast-episodes/
https://engineering.atspotify.com/2022/03/introducing-natural-language-search-for-podcast-episodes/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/2911451.2914806
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://arxiv.org/abs/2102.06156
https://arxiv.org/abs/2102.06156
https://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract
	1 Introduction
	2 Approach
	2.1 Candidate Generation
	2.2 Reranking
	2.3 Metrics and Offline Evaluation

	3 Results
	4 Discussion
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 41.55, 719.01 Width 521.04 Height 20.21 points
 Origin: bottom left

 1
 0
 BL

 1
 AllDoc
 1

 CurrentAVDoc

 41.5488 719.0087 521.0449 20.213

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 4
 5
 4
 5

 1

 HistoryList_V1
 qi2base

